§3. Newton's Laws
(Isaac Newton ~1642-1726)
§3.1 Inertial Frames
In acient times philosophers argued that the earth cannot move around the sun as in that case falling objects would be displaced:

Galileo was the first to realize that physical laws are invariant in "inertial frames" in uniform motion with respect to each other
Definition 1 (inertial frame):
Intertial frames are coordinate frames
which move with constant velocity relative to each other and in which Newton's laws are valid.

Laws of physics are the same for the object in the above two frames (only its velocity is different)
Newton's lIst law (law of inertia):
"If a body has no "forces" acting. on it , it will maintain its velocity.
The earth is an approximate inertial frame:

- acceleration due to motion around sun: $a=v^{2} / r=0.006 \mathrm{~ms}^{-2}$
- acceleration due to spin: $0.03 \mathrm{~ms}^{-2}$

Newton's second law:
"If a body has an acceleration \vec{a}, then you need a force

$$
\vec{F}=m \vec{a},
$$

to produce that acceleration.
Remarks:

1) "Mass" m is measured in Kilograms $k g$
2) Acceleration is measured in ms ${ }^{-2}$
3) Force \vec{F} is measured in $\mathrm{kg} m \mathrm{~s}^{-2}=$: Newton or N
Question:
How do we measure mass and force? Imagine a spring attached to a wall:

If we elongate the spring, it will exert a force \vec{F} on the mass in
\rightarrow measure initial accelaration a, after release
If we now attach another mass M to the elongated spring, then we get:

$$
\begin{aligned}
1 \mathrm{~kg} \cdot a_{1} & =M a_{M} \\
\Leftrightarrow M & =1 \mathrm{~kg} \cdot \frac{a_{1}}{a_{M}}
\end{aligned}
$$

\rightarrow to measure M_{1} we just have to measure a_{M} !
Example 1 (application of and law). If a spring is stretched by a distance x, then it exercises a force $F=-k x$ in the opposite direction

\rightarrow inserting into $F=$ ma gives: $m \frac{d^{2} x}{d t^{2}}=-k x$
\rightarrow solving gives $x(t)$

Newton's third law:
If there are two bodies, called 1 and 2, then F_{12}, the force on 1 due to 2 , is minus the force on 2 due to 1 :

$$
\begin{gathered}
F_{12}=-F_{21} \\
\text { "action }=\text { reaction" }
\end{gathered}
$$

Example 2 (application of 3rd law):
Imagine a $3-k g$ block packed against a $2-\mathrm{kg}$ block, and push the $3-\mathrm{kg}$ block with $10 \mathrm{~N}:$

Want to determine a
i) total mass $=3 \mathrm{~kg}+2 \mathrm{~kg}=5 \mathrm{~kg}$

$$
\Rightarrow \quad a=\frac{F}{m}=\frac{10 \mathrm{~N}}{5 \mathrm{~kg}}=2 \mathrm{~ms}^{-2}
$$

ii) Imagine a the blocks slightly displaced:

Plugging into $F=$ ma gives:

$$
\left.\begin{array}{rl}
10 N-f & =3 \mathrm{~kg} \cdot a \\
f & =2 \mathrm{~kg} \cdot a
\end{array}\right\} \begin{aligned}
& \text { (*) } \\
& \text { both move with } \\
& \text { same accelaration }
\end{aligned}
$$

adding the above equations gives:

$$
\begin{aligned}
& 10 \mathrm{~N}=5 \mathrm{~kg} \cdot a \\
& \Leftrightarrow a=2 \mathrm{~ms}^{-2}
\end{aligned}
$$

\rightarrow inserting back into ($*$) gives:

Example 3 (another application):
Imagine the same 3 kg and 2 kg blocks, but now connected by a rop:

mass 2 is being pulled with 10 M

$$
\left.\begin{array}{l}
\Rightarrow T=3 a, \\
T-T=0 \cdot a \\
\quad \text { rope nearly massless } \\
10-T=2 a
\end{array}\right\} \begin{aligned}
& a d \text { ding gives } \\
& 10=5 a \quad \text { or } \\
& a=2 \mathrm{~ms}^{-2} \\
& \Rightarrow T=6 \mathrm{~N}
\end{aligned}
$$

Example 4 (weight and weightlessness):
Imagine you are standing on a spring in an elevator which is accelerating upwards:

Every (massless) spring is pushed or pulled by equal and oppositie forces \pm F at the two ends since otherwise it would have $a=F \%=\infty$.
\rightarrow relevant equations:

$$
\begin{aligned}
W_{-} m g & =m a \\
\Leftrightarrow W & =m(g+a)
\end{aligned}
$$

- if the elevator is standing still, then $a=0 \quad \Rightarrow \quad W=\operatorname{mg}$
"you feel your own weight"
- if accelerating upward, then

$$
a>0 \rightarrow W=m(g+a)
$$

"you feel heavier"

- if accelerating downward, then

$$
a<0 \Rightarrow W=m(g-|a|) ~=~=m g
$$

"you feel lighter"

- If the elevator is freely falling towards the ground, then

$$
|a|=g \quad \Rightarrow \quad w=0
$$

Note: you have not escaped the pull of gravity!
§3.2 Solutions to Newton's equations
Goal of physics:
predict the future based on present information about location, velocity, mass and forces acting on objects
\rightarrow In this paragraph we want to demonstrate an example of this paradigm:
Imagine a frictionless table with a mass m attached to a spring:

\rightarrow combining $F=m a$ and $F=-k x$, we get
(*) $\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x(f)$
"differential. equation"
\rightarrow mathematics tells us that this equation $h a s$ a unique solution given initial information

- $x(0)$: initial position x_{0}
- $\left.\frac{d x}{d t}\right|_{t=0}$: initial velocity v_{0}
\rightarrow Let's find it!
We find that coset and sinwt with $\omega=\sqrt{\frac{k}{m}}$ are two linearly independent solutions of (*)
\rightarrow make general ansatz:

$$
x(t)=A \cos \omega t+B \sin \omega t
$$

evaluate:

$$
\begin{aligned}
\cdot x(0) & =A=x_{0} \\
\left.\cdot \frac{d x}{d t}\right|_{t=0} & =-A \omega \sin \omega t+\left.D \omega \cos \omega t\right|_{t=0} \\
& =B \omega \stackrel{!}{=} v_{0} \\
\Leftrightarrow B & =\frac{v_{0}}{\omega}
\end{aligned}
$$

In our case: $v_{0}=0 \Rightarrow B=0 \Rightarrow x(t)=x_{0} \operatorname{cosen} t$
$\oint 3.3$ Motion in $d=2$
Corollary 1 (to Newton's and law):
A body pulled by two forces \vec{F}_{M} and \vec{F}_{N} along different angles will move along the diagonal of a parallelogram as if pulled by a force $\vec{F}_{M}+\vec{F}_{N}$:

$$
\begin{aligned}
& A B=\frac{1}{2} \frac{\vec{F}_{M}}{m} T^{2} \\
& A C=\frac{1}{2} \frac{\vec{F}_{M}}{m} T^{2}
\end{aligned}
$$

Proof:
Suppose the object would mare in time T by farce \vec{F}_{M} from A to B, and by force \vec{F}_{M} from A to C. Then the simultaneous application of force \vec{F}_{N} will not alter the velocity along $A B$ but only in the direction of \vec{F}_{N} similarly object will arrive somewhere on $B D$ similarly will arrive somewhere on $C D$ \rightarrow arrives af D

Theorem 1 (Area law):
Suppose a massive point-like object is subject to a central force. Then its motion is contained in a plane and the radius vector sweeps through equal areas in equal times
Proof:
 force

$$
\begin{aligned}
\operatorname{area}(S A C) & =\frac{1}{2}\left(S A+2 S_{1}\right) \cdot 2 h_{1}-\frac{1}{2} 2 S_{1} 2 h_{1} \\
& =\frac{1}{2} S A 2 h_{1}+S_{1} 2 h_{1}-2 S h_{1} \\
& =S A h_{1} \\
\operatorname{area}(S A B) & =\frac{1}{2}\left(S A+S_{1}\right) \cdot h_{1}-\frac{1}{2} S_{1} h_{1} \\
& =\frac{1}{2} S A h_{1}+\frac{1}{2} S_{1} h_{1}-\frac{1}{2} S h_{1}=\frac{1}{2} S A h_{1}
\end{aligned}
$$

$\Rightarrow \operatorname{area}(S B C)=\frac{1}{2} S A h_{\text {, }}$
Use area $(S B C)=$ area $(S B C) \rightarrow$ claim

